An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks.
نویسندگان
چکیده
A unified understanding of >390 Myr of insect evolution requires insight into their origin. Molecular clocks are widely applied for evolutionary dating, but clocks for the class Insecta have remained elusive. We now define a robust nucleotide and amino acid mitochondrial molecular clock encompassing five insect orders, including the Blattaria (cockroaches), Orthoptera (crickets and locusts), Hemiptera (true bugs), Diptera, and Lepidoptera (butterflies and moths). Calibration of the clock using one of the earliest, most extensive fossil records for insects (the early ancestors of extant Blattaria) was congruent with all available insect fossils, with biogeographic history, with the Cambrian explosion, and with independent dating estimates from Lepidopteran families. In addition, dates obtained from both nucleotide and amino acid clocks were congruent with each other. Of particular interest to vector biology is the early date of the emergence of triatomine bugs (99.8-93.5 MYA), coincident with the formation of the South American continent during the breakup of Gondwanaland. More generally, we reveal the insects arising from a common ancestor with the Anostraca (fairy shrimps) at around the Silurian-Ordovician boundary (434.2-421.1 MYA) coinciding with the earliest plant megafossil. We explore Tilyard's theory proposing that the terrestrial transition of the aquatic arthropod ancestor to the insects is associated with a particular plant group (early vascular plants). The major output of the study is a comprehensive series of dates for deep-branching points within insect evolution that can act as calibration points for further dating studies within insect families and genera.
منابع مشابه
Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting
Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accep...
متن کاملInferring biogeographic history from molecular phylogenies
The present study illustrates a method for analysing the biogeography of a group that is based on the group’s phylogeny but does not invoke founder dispersal or centre of origin. The case studies presented include groups from many different parts of the world, but most are from the south-west Pacific. The idea that basal groups are ancestral is not valid as a generalization. Neither the basal g...
متن کاملAncient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals.
Analyses of a comprehensive morphological character matrix of mammals using 'relaxed' clock models (which simultaneously estimate topology, divergence dates and evolutionary rates), either alone or in combination with an 8.5 kb nuclear sequence dataset, retrieve implausibly ancient, Late Jurassic-Early Cretaceous estimates for the initial diversification of Placentalia (crown-group Eutheria). T...
متن کاملDiversity and Abundance of Insects in Wukari, Taraba State, Nigeria
A field survey was conducted in Wukari, Taraba State to assess the diversity and abundance of insect species in selected habitats (residential, open field made up of grassland and an agroecosystem). Sampling were done biweekly using light, pitfall and yellow pan traps set in 3 replicates, 30 m apart. Insects recovered were wet preserved in 70% ethanol except butterflies and moths. Representativ...
متن کاملCochineal (Dactylopius Coccus) as One of the Most Important Insects in Industrial Dyeing
Cochineal is the name of both crimson or carmine dye and the cochineal insect (Dactylopius coccus), a scale insect from which the dye is derived. There are other species in the genus Dactylopius which can be used to produce cochineal extract, but they are extremely difficult to distinguish from D. coccus, even for expert taxonomists, and the latter scientific name (and the use of the term "coch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2002